If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+7x^2=700
We move all terms to the left:
5x+7x^2-(700)=0
a = 7; b = 5; c = -700;
Δ = b2-4ac
Δ = 52-4·7·(-700)
Δ = 19625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19625}=\sqrt{25*785}=\sqrt{25}*\sqrt{785}=5\sqrt{785}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{785}}{2*7}=\frac{-5-5\sqrt{785}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{785}}{2*7}=\frac{-5+5\sqrt{785}}{14} $
| 32=4v+16 | | 116=u−341 | | 9y−12=41y−4 | | -7/5y=-5 | | 30+3c=66 | | 3d=810 | | 29q=812 | | 8v-7=25 | | 10z=770 | | 5q=825 | | 22+3p=73 | | 14-x/3=11 | | 144=12s | | 5g=685 | | 6(w-82)=42 | | 25r=550 | | m-41/4=63/4 | | x/4+25=33 | | 224=28u | | 52=6p-14 | | 9f+14=50 | | -68=8m+12 | | 4.2n+31.5=65.1 | | 12y=804 | | 30+c-49+c-7=180 | | 9=k-82/2 | | f+6/4=5 | | 43+s-11+s-24=180 | | 2-7=h | | 8(h+8)=72 | | x+6-2x=12 | | (-4,3)m=3/4 |